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Background Definitions

Definition (Lamination)

A lamination of the closed unit disk, D, is a closed collection of
chords with the property that no two chords intersect within the
(open) unit disk.

Definition (Sibling Invariant Lamination)
A lamination L is said to be sibling d-invariant (or simply
invariant if no confusion will result) provided that

1 (Forward Invariant) For every ℓ ∈ L, σd(ℓ) ∈ L.
2 (Backward Invariant) For every non-degenerate ℓ′ ∈ L,

there is a leaf ℓ ∈ L such that σd(ℓ) = ℓ′.
3 (Sibling Invariant) For every ℓ1 ∈ L with σd(ℓ1) = ℓ′, a

non-degenerate leaf, there is a full sibling collection
{ℓ1, ℓ2, . . . , ℓd} ⊂ L such that σd(ℓi) = ℓ′.
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Background Definitions

Definition (Gap)

A gap of a lamination is the closure of a component of D \ ∪L.

Finite Gaps are called polygons

Definition (Fatou Gap)
A gap whose intersection with the circle contains a Cantor set
is called a Fatou gap.

Definition (Co-root)
A co-root is a point, other than an endpoint of the major, in the
boundary of the central gap of the unicritical lamination that is
fixed under the first return map. Alternatively, it is also referred
to as the image of these points (under the minor instead of the
major).
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Background Definitions

Definition (Unicritical)
Unicritical Polygons have all criticality on exactly one side of the
polygon which results in a degree d Fatou gap.
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Definition (Maximally Critical)
Maximally Critical Polygons have d − 1 degree 2 Fatou gaps.
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The Correspondence

Theorem
There is a 1-1 correspondence between Unicritical Polygons
and Maximally Critical Polygons. In the identity return case, the
maximally critical polygon will have d sides. In the rotational
and rotation return case, the maximally critical polygon will
have adjacent majors and will have k(d − 1) sides where k is
the period of the unicritical major leaf.
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Identity Return Case: Unicritical to Maximally Critical
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Identity Return Case: Unicritical to Maximally Critical
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Identity Return Case: Unicritical to Maximally Critical
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Identity Return Case: Unicritical to Maximally Critical
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Identity Return Case: Unicritical to Maximally Critical
Using the Generalized Lavaur’s Algorithm, we can identity the
co-roots: 012 and 013
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Identity Return Case: Unicritical to Maximally Critical
Now, we add the full forward orbit of the identity return leaf and
co-roots.
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Identity Return Case: Unicritical to Maximally Critical
When we connect the ends of our Identity Return leaf with the
corresponding co-roots, we get a maximally critical d-gon.
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Identity Return Case: Maximally Critical to Unicritical
A maximally critical polygon and its two forward images:
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Identity Return Case: Maximally Critical to Unicritical
In order to recover our original major, we need to identify which

leaf is shorter than
1
d

. This leaf will be the unicritical major and
is still visible in the maximally critical case.
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Identity Return Case: Maximally Critical to Unicritical
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Rotational Case: Unicritical to Maximally Critical
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Julia Set for Unicritical Rotation Polygon
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Rotational Case: Unicritical to Maximally Critical
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Rotational Case: Unicritical to Maximally Critical
Using the Generalized Lavaur’s Algorithm for determining
co-roots of minors of unicritical laminations, we have that the
co-roots are 002 and 003.
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Rotational Case: Unicritical to Maximally Critical
Now, we add the full forward orbit of the co-roots.
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Rotational Case: Unicritical to Maximally Critical
By connecting the co-roots, their forward images, and our
original vertices, we find our maximally critical polygon.
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Rotational Case: Maximally Critical to Unicritical
We start with a maximally critical rotational polygon.
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Rotational Case: Maximally Critical to Unicritical
In this example, we have 3 orbits of vertices and chain of
adjacent major leaves shown in yellow.
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Rotational Case: Maximally Critical to Unicritical
We connect the beginning and end of the chain of major leaves
to recover our unicritical major leaf.
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Rotational Case: Maximally Critical to Unicritical
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Rotational Case: Maximally Critical to Unicritical
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Rotation Return Case: Unicritical to Maximally Critical
This is a unicritical rotation return polygon. Note that only one
leaf experiences criticality.
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Rotation Return Case: Unicritical to Maximally Critical
Again, using the Generalized Lavaur’s Algorithm, we find the
co-root under the minor leaf.
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Rotation Return Case: Unicritical to Maximally Critical
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Rotation Return Case: Unicritical to Maximally Critical
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Rotation Return Case: Unicritical to Maximally Critical
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Rotation Return Case: Unicritical to Maximally Critical
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Rotation Return Case: Unicritical to Maximally Critical
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Rotation Return Case: Unicritical to Maximally Critical
We now join the endpoints of each polygon with the
corresponding co-root images.
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Rotation Return Case: Maximally Critical to Unicritical
Now, we start with a maximally critical rotation return polygon.
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Rotation Return Case: Maximally Critical to Unicritical
Similar to the rotation case, we identify the chain of adjacent
major leaves shown in yellow:
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Rotation Return Case: Maximally Critical to Unicritical
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Rotation Return Case: Maximally Critical to Unicritical
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Rotation Return Case: Maximally Critical to Unicritical
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Julia Set for Our Unicritical Rotation Return Polygon
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Future and Current Work

Current Work (all Single Critical Moment):
Identity Return (Cameron Hale)
Rotational with Adjacent Majors
Rotation Return with Adjacent Majors

Future Work:
Rotational Single Critical Moment with Non-Adjacent
Majors
Rotational Multi-Critical Moment
Rotation Return Single Critical Moment with Non-Adjacent
Majors
Rotation Return Multi-Critical Moment
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